

NEWS CENTER
新闻中心
微反应技术小试
来源:英格尔医药 发布时间:2021-03-23
精细化工和制药行业中50%的反应都可能受益于主要基于微反应器技术的连续工艺。然而,经常存在的一个固相妨碍了这一技术作为一个多用途解决方案的广泛应用。对于小规模生产,加快研发进度以及避免因扩大生产规模而出现问题是采用这一技术的主要驱动力;另一方面,对于大规模生产来说,采用这一技术的主要动力在于增加产量并确保安全,但是增加的产量收益必须足以平衡用于开发新技术所增加的资本支出。
在精细化工和制药行业,生产过程中通常采用间歇或半间歇工艺。在生产活动中,通常以生产线方式来操作,加入关键物料并最终得到结晶产品。这一工艺的基本操作单元是反应和再处理步骤。间歇或半间歇工艺相对于连续工艺具备有两大主要优势,即灵活性和设备的多功能性。反应釜的灵活性在于它可以轻松调节复杂的反应动力。在半间歇操作中,加料时间通常是有速度限制的;而在间歇操作中,这一反应时间可以通过反应动力来调整。不同的反应界面(如:固-液-气),以及各种后续操作步骤,如蒸馏、液液萃取、结晶等都可以在同一个反应容器实现。
基于Lonza Exclusive Synthesis的对22大工艺的分析,产品的生产周期通常持续4~8周,产量为1.5t/d左右,相对于大规模化学工业来说比较低。一旦生产完成,则需要进行严格而精确的清洗程序,以备下一个产品生产(2~3周)。在能够保证产品高质量的情况下,为了优化后续操作步骤,龙沙公司更倾向于无中间再处理步骤的连续操作。即使在这一情况下,再处理步骤的平均数依然略高于反应单元的数量(2.7:2.1)。反应后直接进入后续操作步骤,可以减少副产品生成和再处理步骤的数量,在选择的过程中需要格外注意。虽然平均每步77%的收率(通常包括连续反应)可以进一步提高,但这一过程优化始终具有内在的限制,只有通过创新技术,才可能满足更高的工艺需求以及成本的优化。
对于大规模化学品生产来说,单一的连续生产的工厂早已被证明是最经济的。然而,一些医药和农业企业,由于其相对产量较低,并且大部分产品生命周期较短,为了节约资本投入,一般都采用多功能性工厂。到目前为止,基于连续工艺技术的多功能工厂在精细化工和制药行业中占有优势。这种设备既具备大规模化工产业连续生产的效率,又满足了精细化工领域所需的设备灵活性以及多功能性。本文主要研究龙沙现有工艺可以从连续生产工艺中获益多少以及连续性反应器的要求。特别说明的是,微反应器技术十分符合相对产量较低的医药行业的要求。由于各有优势,所以就出现了对连续生产与间歇生产的成本分析。
根据详细分析,精细化工和制药行业的反应根据其动力学原理可划分为3个等级。其中值得注意的是,目前超过70%的这类反应都以半间歇方式操作。反应活动受控于某种物料的用量,最终造成反应釜相对反应体积过大,空时收率较低,而原则上连续运行的反应釜会更适合这类反应动力。
基于一些专用合成过程,50%的反应将从连续过程中受益。对于大部分这些反应(44%)来说,微反应器将是首选反应设备。不过,这些反应中一大部分不能在微反应器内进行,这是由于目前可用的设备不能用来处理固体,至少不能满足多用设备需要的灵活性和多功能性。
一个连续多用设备的投资成本与间歇设备类似甚至更高。显著降低成本寄希望于产率的改进或者人力成本的降低,这依赖于更高的自动化水平。另外,微反应器技术可能使一些新的反应线路成为可能,例如无溶剂反应、危险反应以及特殊反应的控制,如氧化和氟化等,尽管这方面的经济效益很难评估。